Step of Proof: last-not-before
11,40
postcript
pdf
Inference at
*
1
3
I
of proof for Lemma
last-not-before
:
1.
T
: Type
2.
L
:
T
List
3.
(
null(
L
))
4. no_repeats(
T
;
L
)
5.
x
:
T
6. last(
L
) before
x
L
7.
x
,
y
:
T
.
x
before
y
L
(
(
x
=
y
))
8.
(last(
L
) =
x
)
9.
x
before last(
L
)
L
False
latex
by
InteriorProof
((FLemma `l_before_transitivity` [6;9])
CollapseTHEN (MaAuto
))
latex
C
1
:
C1:
10. last(
L
) before last(
L
)
L
C1:
False
C
.
Definitions
t
T
,
,
last(
L
)
,
null(
as
)
,
s
=
t
,
L1
L2
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
x
before
y
l
,
no_repeats(
T
;
l
)
,
x
:
A
.
B
(
x
)
,
A
,
b
,
P
Q
,
x
:
A
B
(
x
)
,
Void
,
type
List
,
False
,
Type
Lemmas
l
before
transitivity
,
assert
wf
origin